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Abstract

We describe TREEASPH, a new code to evolve self-gravitating fluids, both with and without a collisionless com-

ponent. In TREEASPH, gravitational forces are computed from a hierarchical tree algorithm (TREEcode), while

hydrodynamic properties are computed by using a SPH method that includes the rh correction terms appearing when

the spatial resolution hðt; rÞ is not a constant. Another important feature, which considerably increases the code effi-

ciency on sequential and vectorial computers, is that time-stepping is performed from a PEC scheme (Predict–Evaluate–

Correct) modified to allow for individual timesteps. Some authors have previously noted that the rh correction terms

are needed to avoid the introduction on simulations of a non-physical entropy. By using TREEASPH we show here

that, in cosmological simulations, this non-physical entropy has a negative sign. As a consequence, when the rh terms

are neglected, the density peaks associated to shock fronts are overestimated. This in turn results in an overestimated

efficiency of star-formation processes.
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1. Introduction

The evolution of astrophysical systems is governed, on nearly all scales, by gravitation and hydrody-
namics. Planet and star formation is thought to occur in accretion disks well represented as collapsing gas

clouds in quasi-hydrostatic equilibrium. The formation and evolution of star clusters is governed by viscous

forces and by interactions with the interstellar medium. It is also believed that galaxies and galaxy clusters

result from dissipational collapse processes, where the radiative cooling and the viscous heating are es-

sential clues to determine their observed structure.
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Because of their complexity, the study of these problems generally requires computer simulations based

on either Lagrangian or Eulerian hydrodynamic methods. Most of the Lagrangian methods used in as-

trophysics are based on the SPH (smooth particle hydrodynamics) technique proposed by Lucy [27] and

Gingold and Monaghan [14]. In SPH, fluid elements constituting the system are sampled and represented

by particles, and the dynamical equations are obtained from the Lagrangian form of the hydrodynamic

conservation laws. The SPH method allows for an easy implementation of adaptive resolution scales and,

therefore, it is well suited to efficiently simulate systems with regions of very different densities. Other

physical processes, such as star formation, feedback, chemical evolution, etc., are also easily implemented in
SPH. Eulerian methods are instead based on the so-called Godunov algorithm [16], where shock capturing

is comparatively more accurate than in SPH. Their new formulations, using adaptive mesh refinements

[5,26,35], are particularly well suited for astrophysical problems. For a comparison of the performances of

different hydrodynamical codes of both kinds see, e.g. [13,22].

A rigorous introduction of variable resolution scales in SPH requires that additional terms must be

included in the particle equations of motion. These terms, which account for the variability of hðr; tÞ, are
usually termed as ‘‘the rh terms’’. Most SPH codes neglect such additional terms because, in simulations

without large density gradients, they seem to have a negligible effect on the global dynamics of systems
[12,15]. However, some authors [20,34,37,40] have noted that, if the rh terms are neglected, the particle

equations of motion are no longer conservative and the SPH method introduces a non-physical entropy the

effect of which is not clear. In principle, this problem is not exclusive of the SPH method but it would also

appear in any other fluid algorithm with a variable spatial resolution.

Since SPH simulations have become an essential tool to study numerous problems in different fields of

physics, it is very important to control any numerical artifact which could alter their results. In particular, it

is necessary to analyze whether the rh terms can be ignored to economize computing time or, on the

contrary, whether they are necessary to obtain reliable results. In this paper, we will describe a new code,
TREEASPH, where gravitational forces are computed from a hierarchical tree algorithm (TREEcode),

while hydrodynamic properties are computed with a SPH method. By using this code, we will also analyze

the possible influence of the rh terms on final results.

The plan of the paper is as follows. After summarizing in Section 2 the SPH and treecode methods,

we describe in Section 3 the basic aspects of our code. The influence of the rh terms on SPH sim-

ulations is analyzed in Section 4. The main conclusions obtained from this analysis are finally presented

in Section 5.
2. Overview of the SPH and treecode methods

2.1. The smoothed particle hydrodynamics (SPH) technique

As we have mentioned in Section 1, the SPH method consists of representing the fluid elements by Ng gas

particles which act as interpolation centers to determine the hydrodynamic properties (such as density,

pressure gradients, etc.) at the position ri of each particle i. This interpolation is performed through a

kernel 1 function W ðjri � rjj; hÞ giving different weights to the information provided by each particle j. The
smoothing length hi specifies the extension of the interpolation volume associated to particle i. It is com-

monly computed through the requirement that a sphere of radius 2hi, centered on particle i, contains a fix

number NS (typically NS ¼ 32) of particles or neighbors.
1 We will adopt throughout this paper a kernel with compact support such as the spline function proposed by Monaghan and

Lattanzio [31].
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The smoothed estimate of the density at ri is given in SPH by:

qðriÞ ¼
XNg

j¼1

mjW ðrij; hijÞ; ð1Þ

where rij ¼ jri � rjj, and hij denotes a symmetrized smoothing length,

hij ¼ ðhi þ hjÞ=2; ð2Þ

necessary to avoid a violation of the reciprocity principle [12].
The motion of particle i is then determined by (see, e.g. [3,21,28]):

dvi

dt
¼ �

XNg
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q2
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þ Pj
q2
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þPij

!
riW ðrij; hijÞ � rUi; ð3Þ
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vijriW ðrij; hijÞ �

Ki

qi
; ð4Þ

where vi ¼ dri=dt, Ui is the local gravitational potential, ui is the specific internal energy, Pi ¼ ðc� 1Þqiui
(with c ¼ 5=3) is the pressure, Ki is a cooling (or heating) function describing non-adiabatic processes other

than shocks, 2 and Pij is the artificial viscosity for which we adopt the standard form proposed by Mo-
naghan and Gingold [30]:

Pij ¼
�alijcij þ bl2

ij

qij
with lij ¼

vijrij

hij r2ij=h
2
ijþg2ð Þ ; vijrij < 0;

0; vijrij P 0:

(
ð5Þ

Here, a and b are constant parameters of order unity, g2 is a softening parameter to prevent numerical

divergences (typically g2 ¼ 0:01), ci is the local sound speed, cij ¼ ðci þ cjÞ=2, and finally qij ¼ ðqi þ qjÞ=2.
In the above expressions for _vv and _uu, we have considered that each particle has an individual value of h,

that is, we have considered variable smoothing lengths. This fact must be taken into account when the

derivative of functions depending on h through the kernel W ðr; hÞ is computed. As a result, Eqs. (3) and (4)

will contain not only spatial gradients rrW , but also additional terms containing oW =oh derivatives. The

form of these additional terms, called the rh terms, has been given by Nelson and Papaloizou [33] in the

case of smoothing lengths symmetrized as in Eq. (2) (see [34] for other symmetrizations). In a compact way,

such terms can be written as ([37] hereafter paper I):
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ð6Þ

where ~aaij and _~uu~uuuj must be added in the sums of Eqs. (3) and (4), respectively, while the subscript km denotes

the most distant neighbor of particle k. As we will see below (Section 3.2), the identification of km does not

require additional computations in TREEASPH because this task is performed, anyway, when the
smoothing lengths are updated.
2 We adopt the cooling function of [7,44] for an optically thin primordial mixture of H and He (X ¼ 0:76, Y ¼ 0:24) in collisional

equilibrium and in absence of any significant background radiation field.
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2.2. The hierarchical tree method: the TREECODE algorithm

Unlike hydrodynamic interactions, where the properties of a particle are actually determined by the
contribution of a modest number of neighbors, the gravitational potential and acceleration of each particle

are determined by the interactions with all the remaining particles in the system. Consequently, if gravi-

tational accelerations are computed as the direct sum of all interactions between particles (Particle–Particle

method), the computing time on sequential and vectorial computers scales as / N 2. Simulations with large

numbers of particles then become prohibitively expensive in terms of computing time. More efficient

procedures to solve the gravitational dynamics are then needed. For example, mesh-based methods

[11,12,31,36], or hierarchical tree methods [8,21,39,45].

In TREEASPH, gravitational interactions are computed using the hierarchical tree algorithm (Treecode)
introduced by Barnes and Hut [2] and implemented on Fortran by Hernquist [17–19]. Like the PP and SPH

methods, the Treecode algorithm is fully Lagrangian and does not use grids which could compromise the

spatial resolution and/or impose geometric constraints. Furthermore, the data structure used to manipulate

the grouping of particles can be directly applied to certain aspects required in the SPH calculations. The

Treecode algorithm relies on a hierarchical subdivision of space into regular cubic cells. The root cell (or

node) is a cubic volume which contains all particles in the system. This cell is subdivided into eight cubic

cells (in three dimensions) of equal volume, which constitute the immediate descendants of the root node.

These cells are subdivided at the next step in smaller unities, and this process continues recursively until
each subcell contains either one or zero particles.

The force on a particle is the sum of the (exact) force from nearby particles, plus the force from distant

cells approximated as multipoles. These terms are determined by walking through the tree, starting from

the highest part of the hierarchy (that is, from the largest volume). At each step, we check to see if the

following condition [2] is satisfied

s
h
þ d < d; ð7Þ

where d is the distance from the particle to the cell center of mass, s is the cell size, d is the distance from the

cell center of mass to its geometric center, and h is a fix tolerance parameter (here, h ¼ 0:4). If condition Eq.

(7) is satisfied, the effect of all particles contained in that cell is computed by approximating the cell as a

multipole. Otherwise, the cell is subdivided by continuing the descent through the tree until either the
tolerance criterion is satisfied or an elementary cell is reached. In this way, all operations, including the tree

construction and evaluation of forces, can be performed in a time proportional to N logN .

Since particles just represent elements of a continuous fluid, their gravitational interaction must be

softened by using the techniques described in Section 2.1. To that end, our code uses the same procedure as

in [14,21].
3. TREEASPH

3.1. PEC integration scheme with individual timesteps

The simulation of a system constituted by N particles usually requires a computational effort which

considerably varies from some regions (or particles) to other. For example, zones of high density and
submitted to strong shock waves must be simulated with timesteps much shorter than in the rest of the

system. In most of the SPH codes described in literature, all the particles in the system are simultaneously

advanced at each timestep. The particle needing the highest time resolution determines the timestep length

of all the others. Consequently, a few particles can slow down the simulation of a system.
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To make a code more efficient in handling problems with multiple time scales, the computational effort

must be centered on those particles that require it, avoiding useless computations for the remaining par-

ticles. In other words, it is necessary to allow for different timesteps for each particle. Such a requirement

has been implemented in TREEASPH by modifying the usual PEC (Predict–Evaluate–Correct) integration

scheme in the following way:

1. We enter the step n (which corresponds to the time tn) with known positions rni , velocities vni , and

accelerations ani , for all the N particles. It is also known, for all the Ng gas particles, their smoothing

lengths hni , specific internal energies uni , and their derivatives _uuni . Furthermore, any integration scheme
with individual timesteps needs additional information to identify, at each step, the particles needing

a recomputation of their accelerations and their thermal energy derivatives. This information is

stored in two vectors tlasti and tnexti . The former contains, for each particle, the time at which the last

recomputation of a and _uu was performed. The second vector, tnexti ¼ tlasti þ Dti, corresponds to the

time at which a recomputation of those variables will be necessary in the future rni ; v
n
i ; a

n
i ; h

n
i ; u

n
i ; _uu

n
i ;

tnexti ; tlasti :
2. A list is constructed with those particles j whose value of tnext is close to the current time tn. Such particles

are labelled as active because they will soon require a complete recomputation of their variables. We then
take

Dt ¼ min
j
ðtnextj � tnÞ: ð8Þ

3. For all particles, active or not, we predict the value of rnþ2, vnþ1, and unþ1 at tnþ1

~rrnþ1
i ¼ rni þ vniDt þ anaðDtÞ

2
=2; ð9Þ
~vvnþ1
i ¼ vni þ aniDt; ð10Þ
~uunþ1
i ¼ uni þ _uuniDt: ð11Þ

4. Only for active particles, we compute anþ1
grav using ~rrnþ1

5. For all gas particles, we compute the hydrodynamic variables hnþ1, qnþ1, and ðP=q2Þnþ1
using ~rrnþ1 and

~uunþ1.
6. Only for active gas particles, we compute _uunþ1 and anþ1

hydro. Then, we correct rnþ1, vnþ1, and unþ1:

rnþ1
j ¼ ~rrnþ1

i þ Aðanþ1
j � anj ÞðdtjÞ

2
=2;

vnþ1
j ¼ ~vvnþ1

i þ Bðanþ1
j � anj ÞðdtjÞ;

unþ1
j ¼ ~uunþ1

i þ Cð _uunþ1
j � _uunj ÞðdtjÞ;

ð12Þ

where B ¼ 1=2 is required to obtain accurate velocities to second order, while the choice of A and C is

somewhat arbitrary. The choice A ¼ 1=3 and C ¼ 1=2 maintains accuracy to second order both in po-

sitions and internal energies [11]. In these expressions, dtj represents the time interval elapsed from the

last evaluation of a and _uu

dtj ¼ tn þ Dt � tlastj : ð13Þ

Note that, unlike Dt, the dtj value can be different for each active particle.

7. For all gas particles, we compute the variation by radiative cooling of their specific internal energies by
following the integrated scheme of Section 3.4.

8. We update the global time: tnþ1 ¼ tn þ Dt.
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9. We estimate the individual timestep Dtj, and update the tlastj ¼ tnþ1 and tlastj ¼ tnþ1 þ Dtj values for each
active particle.

In the set of SPH computations outlined in the above PEC scheme, there are some aspects which have

not been already discussed and which differ (at least in some points) from our previous PPASPH code: (1)
Updating of smoothing lengths, (2) Setting of individual timesteps, (3) Implementation of cooling pro-

cesses, and (4) Star-formation criteria.
3.2. Search of neighbors and computation of smoothing lengths

Since our code uses a spline kernel with compact support, the SPH properties of particle i are de-

termined only by the contribution of particles j within a distance 2hij ¼ hi þ hj. On the other hand, the

individual smoothing lengths hi are updated at each time step from the requirement that a sphere of

radius 2hi, centered on particle i, contains a fix number NS of neighbors. Thus, a fundamental requirement
of SPH is an efficient algorithm for the neighbor search, both in the case in which the search sphere

around particle i has a radius 2hij (which depends on the smoothing lengths of neighbors) and 2hi (in-
dependent of hj).

The first of these tasks is performed in TREEASPH in the following way. When the tree structure is

constructed, we save the maximum hi value of gas particles contained in each cell, hmax
cell . Later, in the SPH

computations, the particles contributing to the local properties of i (that is, those satisfying rij < 2hij) are
identified as follows. First, we enclose the particle i in a cubic volume of side 2hi (hereafter, the search cube).

Then, we descend through the tree as for the force calculation. At each level, we enclose the volume rep-
resented by the current node in the tree in a cube of side scell þ 2hmax

cell , where scell is the cell size. We then

check to see if this volume overlaps the search cube. If not, we do not continue the descent down that

particular path. Otherwise, the cell is subdivided and we descend down the next level. If the current cell

represents a particle, we check to see if it lies within a distance 2hij from particle i, recording it if appro-

priate. This procedure continues recursively until all paths in the tree are exhausted.

A similar algorithm is used to count the number Ni of neighbors (rij < 2hi) for particle i but, now, the
volume represented by each cell is enclosed in a cube of side scell þ 2hi (instead of scell þ 2hmax

cell ). Using this Ni

value, the procedure to update hi is then similar to that used by Hernquist and Katz [21]. For each SPH
particle, we start with a prediction

hnþ1
i ¼ hni

1

2
½1þ ðNS=NiÞ1=3� ð14Þ

for the smoothing length at time tnþ1. Using this prediction, we compute the number of neighbors Ni of

particle i. If Ni differs from NS by more than a prescribed tolerance, then hnþ1
i is corrected so that the Ni

value falls within the allowed range surrounding NS.

3.3. Individual timestep lengths

In order to maintain the numerical integration stability, the timestep of each particle must be modified at

each step according to different criteria. A first timestep control concerns the time scale for significant

displacements or changes in velocity due to accelerations:

Dtai ¼ 0:25ðh2i =a2i Þ
1=4

; ð15Þ

where, for dark-matter particles, the smoothing length hj is replaced by the softening parameter �i.
A second limit on Dti is usually given by a timestep control which combines the Courant and the viscous

conditions:
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Dtcvi ¼ 0:2hi
ci þ 1:5ðaci þ bmaxj jlijjÞ

" #
: ð16Þ

The timestep of particle i is then given by

Dti ¼ jminðDtai ;Dtcvi Þ; ð17Þ

where the normalization factor j has been taken equal to 0.5, as required [42] by the integrated cooling

algorithm of our code.
3.4. Implementation of cooling

In the presence of cooling processes, an additional constraint should be imposed on the integration

timestep: Dti < ui= _uucooli , where

ducooli

dt
¼ �KðTiÞ

qi
: ð18Þ

Such a constraint can be circumvented by implementing the cooling processes in the integrated form pro-

posed and tested by Thomas and Couchman [43] (see also [1]). As a matter of fact, since the Courant con-
dition ensures that densities do not change considerably over one step, Eq. (18) can be integrated to give [43]:Z ui�Ducooli

ui

ducooli

Ki
¼ �Dt

qi
: ð19Þ

Special treatment is required to prevent an overestimation of cooling processes in a few underresolved
zones coincident with the recombination front. To this end, as in [1], the particles submitted to such a non-

physical catastrophic cooling phenomenon were enforced to satisfy a pressure equilibrium condition. To be

specific, particles which overcool are selected by using two criteria:

1. The local cooling time (Dtcooli ¼ ui= _uucooli ) is smaller than the viscous-sound crossing time implied by the

Courant condition, Dtcvi :

Dtcooli < Dtcv: ð20Þ
2. The local pressure after updating the cooling term of all particles is smaller than half the average pres-

sure P i of the neighbors of particle i:

Pi 6 P i=2: ð21Þ

When both criteria are satisfied for a particle, we enforce the condition Pi ¼ P i. It is important to note that

the second of these criteria requires that cooling processes have been updated for all the neighbor particles.

Therefore, when individual timesteps are used, this special treatment must be applied only when all the gas
particles are simultaneously active. Our code enforces this situation at least once every dt ¼ maxðDtsimi Þ,
where Dtsimi denotes the individual timesteps at the last simultaneous activation of all particles.
3.5. Star formation

3.5.1. Star-formation criteria

Our criteria for star formation are similar to those of [23]. A gas particle is considered to be eligible to

form stars if it satisfies the following conditions:
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1. The particle is in a collapsing region or, equivalently, the SPH estimate for the velocity divergence is neg-

ative:

r � vi ¼ � 1

qi

XNg

j¼1

mjvij � riW ðrij; hijÞ < 0; ð22Þ

where vij ¼ vi � vj.

2. It is Jeans-unstable, which implies that pressure forces are unable to halt the collapse. Jeans instability is

determined locally by requiring that the sound crossing time be larger than the gravitational dynamical

time:

hi
ci
>

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pGqi

p : ð23Þ

Since the softened gravitational force limits the maximum density that a region can obtain, a region

could fail the above criterion merely because it has reached such a maximum density and, then, its

collapse has stopped. To prevent star formation from being artificially quenched, we do not apply the

Jeans criterion in regions where the effects of softened gravity are severe. We consider a particle to be in a

softened region if [23]

0:89553
p�iffiffiffi
2

p
� �2 lmHG

kTi
> 10; ð24Þ

where �i is the gravitational softening length of the gas particle, Ti is the gas temperature, l is the mean

molecular weight, mH is the mass of hydrogen, and k is Boltzmann�s constant.
3. Following [41], we also require that regions of star formation have a minimum physical density. We have

chosen the same threshold density as in [24]:

qi > 1:67� 10�25 g=cm
3
; ð25Þ

which is a plausible value on observational grounds [25] and prevents us from overestimating the effects

of supernova feedback. In addition, this threshold density is high enough to almost ensure that the gas

particle will cool quickly and remain cool as it collapses [32].

Once a gas particle is eligible to form stars, we must decide how and how fast it is turned into stars. We

adopt a rate of the form

dqg

dt
¼ � dq�

dt
¼ �

c�qg

tg
; ð26Þ

where c� is a dimensionless star-formation rate parameter, and tg is a characteristic time-scale chosen to be

equal to the maximum of the local gas-dynamical time tdyn ¼ ð4pGqgÞ
�1=2

, and the local cooling time,

tcool ¼ ui= _uui. If the cooling time is shorter than the dynamical time, the region can collapse unimpeded by
gas pressure, but if the cooling time is longer than the local dynamical time, the region must wait to cool

before it can collapse and make stars. We consider that a region has already cooled if its temperature is

smaller than 30,000 K. In that case, we set tg equal to tdyn.
Eq. (26) implies that the probability p that a gas particle forms stars in a time Dt is

p ¼ 1� e�c�Dt=tg : ð27Þ

Since numerical constraints force us to transform gas into stars in discrete steps, we compute p at each

system time step for all eligible gas particles and draw random numbers to decide which particles actually
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form stars. These particles form then a new star particle of mass mi��, where mi is the mass of its parent gas

particle and �� ¼ 1=3 is a star-formation efficiency parameter [23]. When this parameter is smaller than

unity, the star-formation process for the gas particle i could be quenched, at later times, by the energy

injected through supernovae or stellar winds. The new star particle inherits from its parent its position,

velocity, and gravitational softening length. We allow each gas particle to form a maximum of four stars

and, once a gas particle has formed a star, we reduce its mass in mi��.
3.5.2. Feedback

Star particles essentially behave as collisionless matter. However, unlike dark-matter particles, stars

affect the surrounding gas by processes other than purely gravitational interactions. For example, some

fraction of the mass and internal energy of stars can return to the gas through stellar winds and supernova

explosions. Since our current understanding of these feedback processes is rather poor, their numerical

treatment remains the most uncertain aspect of hydrodynamic codes.

For simplicity, we neglect here any effect produced by normal stars and stellar winds and, then, we only

consider feedback processes from supernovae. To model these processes, one must take into account that

star particles usually have individual masses much larger than those of real stars. Consequently, each star
particle represents a group of stars, rather than an individual object.

In order to determine the number and mass fraction of supernovae within a star particle of mass mi, we

approximate the initial mass function (IMF) by a power law: NðMÞ ¼ KðM=M�Þ�ð1þxÞ
, with x ¼ 1:5 and

lower and upper mass cutoffs of 0.1M� and 40M�, respectively [6,32]. We also assume that every star more

massive than 8M� ends as a supernova which injects both mass and energy to the surrounding gas.

The mass injection from supernovae is modelled by assuming [23] that each supernova leaves a stellar

remnant of 1:4M�, while its remaining mass is returned as recycled gas to its environment. The adopted

IMF implies that a newly formed star particle of mass mi represents a number of stars given by N� ¼ mi=m�
(m� ¼ 0:29M�). Since only � 0:13% of such stars (� 6:5% of stellar mass) have masses larger than 8M�, the

particle mass in form of supernovae is 0:065mi, what leaves stellar remnants of mass 0:006mi. Using an

instantaneous recycling approximation, the mass of a new star particle is decreased by an amount of

DmSN
i ¼ 0:059mi, which is added to its parent gas particle [23].

The injection of energy is modelled by assuming that each supernova yields 1051 erg. A fraction ð1� f Þ
of this energy is added to the surrounding gas in the form of heat (thermal feedback), while a fraction f is

deposited as kinetic energy (kinetic feedback). The value of f is a rather uncertain input parameter usually

taken as 0 (e.g. [24]) or 0.1 (e.g. [32]).
For the adopted IMF, a new star particle contains 0.0045 supernovae per solar mass. Thus, an energy of

4:5� 1048 erg for every M� turned into stars is smoothed over the neighboring gas particles. Unlike the

injection of mass, this energy is gradually added according to an energy deposition function (EDF) assumed

to be exponential [24] with decay time of 4:3� 107 years, the approximate lifetime of an 8M� star. Writing

this EDF as a percentage of the total energy distributed, and integrating over Dt, we can compute for each

�active� star particle the energy released by supernovae during the current timestep (DESN
i ). The amount of

energy received by each particle j near the star particle i is computed by kernel smoothing as [41]:

DESN
ij ¼ DESN

i

W ðrij; hijÞP
neigh W ðrij; hijÞ

; ð28Þ

where an amount ð1� f ÞDESN
ij is used to increase the thermal energy of particle j, while fDESN

ij goes into

kinetic energy as a velocity perturbation directed radially away from the star. This velocity perturbation of

neighbor j due to the supernova explosion of particle i is computed as

DvSNij ¼ jDvSNij jðrji=rjiÞ; ð29Þ
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where jDvSNij j is obtained from the second-order algebraic equation:

fDESN
ij ¼ mi ðvji � rjiÞ

jDvSNij j
rij

"
þ 1

2
jDvSNij j2

#
; ð30Þ

where vji being the velocity of neighbor j relative to the star.

We must note that star formation and feedback from supernovae involve several processes which do not
conserve the total energy: thermal and kinetic energy added through supernovae, new gravitational in-

teractions between recent star particles and their parent gas particles, and the energy lost through gas being

converted into stars. We record at each step the energy changes through all these processes to allow us to

calculate energy conservation.
4. Influence of the $h terms

4.1. The simulations

As we have mentioned in Section 1, the neglect of the rh terms introduces on SPH simulations a non-

physical entropy the effect of which is not clear. In this section, we will analyze the possible influence of this

entropy. To that end, we have performed different simulations of the collapse of a rotating sphere con-

stituted by gas submitted to radiative cooling and by a dominant amount of dark matter.
Initial conditions were exactly the same in all simulations. That is, we consider Ngas ¼ NDM ¼ 1736

particles distributed on a qðrÞ / r�1 spherical perturbed grid of initial radius Rtot ¼ 100 kpc, and total mass

Mtot ¼ 1012M�. The gas represents 10 per cent of this mass and is initially at uniform temperature T ¼ 103

K. Particle velocities were assigned by considering the sphere in solid-body rotation around the z-axis with

spin parameter k ¼ J jEj1=2=GM5=2
tot � 0:1 (J and E stand for the total angular momentum and total energy,

respectively). Gravitational softening parameters were taken to be 2 and 5 kpc for the gas and dark matter,

respectively, and the artificial viscosity parameters were a ¼ 1, b ¼ 2. Units were chosen so that G ¼ 1,

½M � ¼ 1010M�, ½L� ¼ 1 kpc.
In a first simulation, the rh terms were ignored as well as star-formation processes. This simulation is

useful as a test to compare our results to those found from other codes ([32] and paper I). Fig. 1 shows the

time evolution of this test simulation. We see that the system has a first phase, where the gas collapses

without pressure support until it becomes centrifugally supported in a thin disk-like structure. The disk is

almost completely formed soon after the collapse time (t � 120) and evolves little thereafter. A spiral-like

structure in the gaseous disk starts also to be apparent at nearly the same time and remains during the rest

of the simulation.

In a second simulation, where the rh terms were taken into account, the final results were not very
different from those obtained in the previous simulation. As a matter of fact, the gas density profile has a

final central peak which appears to be very slightly less dense than in simulations neglecting the rh terms.

However, since the [33] formulation introduces some scatter on the density field, such differences are here

smaller than the error bars estimated from the local scatter of the individual SPH densities. Therefore, in

order to study the influence of the rh terms, a different approach must be considered. To that end, Springel

and Hernquist (2002) have applied a new formulation for the rh terms, which reduces the local scatter, to

analyze the global properties of several galaxy-like objects obtained from cosmological simulations. An-

other possibility consists of considering irreversible processes where any change introduced by therh terms
is permanent and adds to other similar changes occurring during the system evolution. A clear example of

such processes is star formation, usually associated to collapsing regions and to strong shock fronts. We

will consider in this paper the latter approach.



Fig. 1. Time evolution of a two-component rotating sphere without star formation. Units are G ¼ 1, ½M � ¼ 1010M�, ½L� ¼ 1 kpc.
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4.2. Star-formation results

We have then performed two other simulations starting from the same initial conditions as before, but

now including star-formation and feedback processes (with parameters c� ¼ 0:1, �� ¼ 1=3, and f ¼ 0). In

the simulation labelled as NOH, the rh terms were switched-off while, in simulation labelled as H, such

correction terms were included. Fig. 2 shows the time evolution of the star component in both simulations.

We see that the global features of the system evolution are similar to those observed in the previous control



Fig. 2. Time evolution of stars in the simulations H and NOH defined in the text.
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simulation: a centrifugally supported stellar disk is formed soon after the collapse time and remains during

the rest of both simulations. However, the spiral-like structure is now less evident than in the control

simulation (without star formation).

In order to compare quantitatively the star-formation results in both H and NOH simulations, we
display in Fig. 3 the total mass of stars, M�, as a function of time. The solid line represents the M� evolution

when the rh terms are ignored (denoted by MNOH
� ), while the dotted line corresponds to the case in which

such terms were switched-on (denoted by MH
� ). We see that, although both simulations give identical results

during the initial phase of collapse, predictions on M� become considerably different after t � 100. In

particular, the MNOH
� value grows faster than MH

� during a time interval around the collapse time until a

maximum deviation is reached. Such a deviation remains almost unchanged during the rest of the system

evolution and, at the final state, star-formation processes in simulation NOH appear to be overestimated by

about 20 per cent (in this specific example) with respect to those found in simulation H. Such a behavior is
also observed in Fig. 4, which displays the time evolution of the star-formation rate (SFR). We see from

this latter figure that the observed differences between the H and NOH simulations are mainly produced

during a wide time interval around t � 100. Such an overestimation of star-formation processes is higher in

the densest regions (see Fig. 5), what can be easily understood because such regions are precisely the main

sites of star formation.



Fig. 4. Star-formation rate (SFR) as a function of time (code units). The solid and dotted lines correspond to the NOH and H

simulations, respectively.

Fig. 3. Total mass of stars as a function of time (code units).
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Two additional series of simulations have been performed to analyze the possible dependence of our

results on the mass and spatial resolution. In series A, we have progressively increased the mass resolution

(both for the H and NOH simulations) by considering larger numbers of particles: NgasþDM ¼ 3472, 6944,



Fig. 5. Density of stars as a function of the gas density at t ¼ 320. The 99% confidence region is indicated.
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13,888 and 27,776. Typically, the number of the additional star particles at the end of each simulation is

about 3Ngas. In this first series of simulations, the individual smoothing lengths have been updated by

imposing a constant number of SPH neighbors (see Section 3.2). In series B, we have instead imposed a

minimum value for the smoothing lengths: hmin ¼ �gas ¼ 2 kpc. In this latter case, all particles with

h ¼ hmin have vanishing rh terms and, in addition, do not contribute to the rh terms of other particles.
Fig. 6 shows the final MNOH

� =MH
� ratios obtained in both series of simulations. We see that the MNOH

� =MH
�

ratio exhibits a very slight decrease with NgasþDM and that, even when the mass resolution is improved by

a factor of eight, a difference of about 20% remains in the star-formation results of simulations H and

NOH. Furthermore, the results obtained from simulations B imply MNOH
� =MH

� ratios which are only

slightly smaller than those found in series A. This latter result can be understood from the fact that

regions denser than the threshold density for star formation (see Eq. (25)) have a size much larger than

�gas. As a matter of fact, we will see later (in Fig. 8) that most regions at t ¼ 128 are denser than such a

threshold density (0:25� 10�3 in code units).

4.3. Physical interpretation

In order to understand the physical origin of these different results on star formation, we have analyzed

the time evolution of the total entropy both in simulation H and NOH. This evolution is displayed in Fig. 7,

which shows that the total entropy is smaller in simulation NOH than in simulation H. Taking into account

the fact that simulation H is constructed so that entropy variations have a physical origin, Fig. 7 implies

that the non-physical entropy introduced in simulation NOH has a negative sign. This result has an im-
mediate consequence:

Since cooling processes are very efficient in these simulations, the temperature has always an almost

constant value, 104 K, which corresponds to the effective cut-off of the cooling function. On the other hand,

from the definition of the entropy



Fig. 6. Ratio of the final stellar mass in simulations NOH to that obtained in simulations H. Solid circles correspond to simulations

without any constraint on hmin, whereas open circles correspond to simulations with hmin ¼ �gas.

Fig. 7. Time evolution of the total entropy.
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s ¼ ln T=q2=3
� �

; ð31Þ

it is clear that a smaller entropy implies a larger density. Therefore, those regions with a larger introduction

of non-physical entropy (non-relaxed and dense regions as, e.g., shock fronts) will have an over-estimated

density. This is clear in Fig. 8, which shows (upper panels) the density profiles at t ¼ 128. We see from this

figure that both simulations have, at this time, a central density peak and also a secondary peak which

corresponds to a strong shock wave traversing the system after the collapse. This latter density peak is

considerably larger in simulation NOH than in simulation H, as a consequence of the lack of entropy when

the rh terms have been neglected.

The above over-estimation of density peaks produces a permanent effect on star-formation processes. As
a matter of fact, when we look for the star-formation sites at this time (lower panels in Fig. 8), we find that

they are mainly associated to the two density peaks. In the inner core, the star-formation rate in simulation

NOH is nearly the same as in simulation H. On the contrary, in regions coincident with the shock front, the

higher strength of shocks in simulation NOH results in an enhanced star-formation rate as compared to

that found in the H case.

We have also analyzed if such an increase in star formation results could be avoided by choosing

smaller values for the artificial viscosity parameters a and b in simulation NOH. In other words, we
Fig. 8. Gas density (upper panels) and number of eligible particles (lower panels) as a function of radius at t ¼ 128.
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have analyzed if the viscosity parameters in simulations ignoring the rh terms can be �normalized� so
that results coincide with those found when such terms are taken into account. To that end, we have

performed a series of simulations neglecting the rh terms and starting from the same initial conditions

as before, but with progressively smaller a and b parameters. We have however found that a decrease in

the a and b parameters results only in a very modest decrease on the final M� value. As a matter of fact,

in the extreme case in which the a and b values are taken very small (e.g., a ¼ 0:1 and b ¼ 0:2) star-

formation results are intermediate between the previous H and NOH case, but the remaining system

features (gas density profiles, etc.) are considerably degraded because of the very poor simulation of
shocks. In the same way, the parameters c� and q� giving the efficiency of star-formation processes could

be calibrated to have the same final mass of stars in both simulations. However, this latter procedure

would change the SFR history and, consequently, we would obtain in simulation NOH final stellar

populations with ages which are considerably different from those found in simulation H. We then find

no way to reconcile the results of both kinds of simulations.
5. Conclusions

We have presented a new code (TREEASPH) for evolving self-gravitating fluids in astrophysics, both

with and without a collisionless component. In TREEASPH, gravitational forces are computed with a

hierarchical tree algorithm (TREEcode), while hydrodynamic properties are computed using an Adaptive

Smoothed Particle Hydrodynamics (ASPH) method. By adaptive we mean that our code includes the rh
correction terms appearing when the spatial resolution hðt; rÞ is not a constant (in [38] adaptive means

instead a variable spheroidal kernel). Another important feature, which considerably increases the code

efficiency on sequential and vectorial computers, is that time stepping is performed from a PEC scheme
(Predict–Evaluate–Correct) modified to allow for individual timesteps.

This code has been used to analyze in detail the possible influence of the rh correction terms. To that

end, we have simulated the collapse of a rotating sphere both with and without such correction terms. We

find that simulations neglecting the rh terms introduce a negative entropy. This non-physical entropy is

mainly located in dense and non-relaxed regions as, for example, the density peaks associated to strong

shock fronts. As a consequence, when the rh terms are neglected, these density peaks are over-estimated.

Since the strong shock waves are one of the main sites of star formation, the higher strength of shocks in

simulations neglecting the rh terms results in an enhanced star-formation efficiency. Such a numerical
artifact cannot be avoided by just considering smaller values for the viscosity parameters, but only when

such correction terms are considered.

Obviously, although we expect that our conclusions will be qualitatively the same in any other situation,

the quantitative results depend of each specific problem. In general, situations involving shocks much

stronger than those found in this paper will present a much more severe overestimation of star-formation

processes. On the other hand, because of the high degree of arbitrariness in the current treatment of these

processes, we also expect that differences between simulations using different star formation criteria could

be more important than those found when the rh terms are neglected. However, since an improvement of
such criteria is a matter of current research, we believe very important to control any numerical artifact

which could alter the results obtained from simulations.

We would like to conclude by pointing out that SPH is becoming more and more important in many

fields of physics and engineering. For example, in industrial problems such as high pressure die casting [9],

brittle solids [4], flow through porous media [10], free surface flows [29], etc. Probably, these other fields

also contain irreversible processes where the rh terms could be important. We then suggest that the rh
effects on the final results of these other fields should be analyzed in more detail.
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